Japanese-German Workshop: Emerging Phenomena in Spatial Patterns, Magdeburg, 22<sup>rd</sup> September, 2014 Mechanism of Candle Flame Oscillation: Explosive and Periodic Combustion Induced by Air Turbulence above the Candle Flame H. Miike\*, Y. Nagamine\*\*, A. Osa\* \*Yamaguchi University, Ube, Japan

\*\* Ube National College of Technology, Ube, Japan



Japanese-German Workshop: Emerging Phenomena in Spatial Patterns, Magdeburg, 22<sup>rd</sup> September, 2014

### 1 .Introduction: Scientific History of a Candle















#### <u>Great similarity between the sync of oscillators</u> and the phase transition : emphasized point

- A. Winfree discovered an unexpected link between biology and physics. He realized that mutual synchronization is analogous to a phase transition.
  = Statistical physics can be a key to solve the great
- variety of synchrony in nature.
- Y. Kuramoto simplified Winfree's model and obtained the exact solution. The model revealed the essence of group synchronization.

# Similarity between the sync of oscillators and the phase transition

- Winfree's model:  $\dot{\phi_i} = \omega_i + Z(\phi_i)I(t), \quad I(t) = \frac{K\sum_{i=1}^N V(\phi_i)}{N\sum_{i=1}^N V(\phi_i)}$
- · Kuramoto's model:  $\dot{\phi_i} = \omega_i + \frac{K}{N_{j=1}^N} \sin{(\phi_j \phi_i)}$ 
  - Incoherent Equilibrium State

# Important Points of SYNC

- Analogy between group synchronization and phase transition had been established.
- S. Strogaz@proposed a concept of "Oscillator Fluid" to solve the stability problem of the incoherent equilibrium state. The answer was "neutrally stable
- Reduction is may not be powerful enough to solve all the great mysteries we're facing <u>Cancer, Consciousness, The</u> Origin of Life, AIDS, Global Warming, •••
- Nonlinear dynamics central to the future of science. Chaos  $\rightarrow$  Complexity  $\rightarrow$  Emergence  $\rightarrow$  What comes next?

## ${\rm I\!I}$ . Candle Flame is a nonlinear Oscillator !



























![](_page_4_Figure_1.jpeg)

![](_page_4_Picture_2.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

![](_page_4_Figure_6.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_3.jpeg)

![](_page_5_Figure_4.jpeg)

![](_page_5_Figure_5.jpeg)

![](_page_5_Figure_6.jpeg)

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

![](_page_6_Figure_4.jpeg)

![](_page_6_Figure_5.jpeg)

dynamics. The clouds descend to the top of flame and cause an explosive combustion, which induces the torn-off flame with soot.

![](_page_6_Figure_7.jpeg)

![](_page_7_Figure_1.jpeg)