Japanese－German Workshop：Emerging Phenomena in Spatial Patterns，Magdeburg，22 ${ }^{\text {rd }}$ September， 2014

Mechanism of Candle Flame Oscillation：
Explosive and Periodic Combustion Induced by Air Turbulence above the Candle Flame

H．Miike＊，Y．Nagamine＊＊，A．Osa＊
＊Yamaguchi University，Ube，Japan
＊＊Ube National College of Technology，Ube，Japan

Japanese－German Workshop：Emerging Phenomena in
Spatial Patterns，Magdeburg，22 ${ }^{\text {rd }}$ September， 2014

1 ．Introduction：Scientific History of a Candle

Michael Faraday（1791－1867）：His Carrier

1791年（0）：Born in London，UK
1804年（13）A Deliveryman of Book
Maker，An Apprentice：A Laboratory in a Garret（Self－education） 1813年（22）Assistant of The Royal Institute
1816年（25）：First Scientific Paper 1825年（34）：Chief of The Royal Institute， Discovery of Benzene
1826年（35）Starting X－mas Lecture 1831年（40）：Electromagnetic Induction
1833年（42）：Professor of The R．I．
Discoveries of Law of Electrolysis and
Faraday dark part．
1845年（54）：Discovery of Faraday effect

1846年（55）：Electromagnetic Wave Theory of Light 1861年（70）：Lecture of Candle 1862年（71）：Experiment on magnetic field effect of light 1867年（76）：Died（76 years old） 1966年：TV－broadcasting of the X－mas Lecture
1973年：Faraday Museum the Royal Institute，London）

There is no better，there is no more open door by which you can enter into the study of natural philosophy than by considering the physical phenomena of a candle＂

Xmas Lectures（Since 1826）， M．Faraday

（ 2Physical Approach to Candle： $20^{\text {th }}$ Century
Âtoms，Electrons，and Change」
Reter William Atkins，1991）
－Nature is a complex system，however，not a matter beyond our understanding．All conversions among materials can be understood by chemical reaction，which is a location change of atoms．This book picks up the carbon，which is important for the living system．
－Science of 20th Century challenges to understand the candle conversation through Quantum Mechanics．

A paradigm shift is necessary from Newton Mechanics to Quantum Mechanics to understand the details of chemical reaction．
http：／／en．wikipedia．org／wiki／Peter＿Atkins

Science of Candle by P. W. Atkins
§ 2 Chemical Reaction

Molecular Orbitals

- Electron pairs of chemical bounding occupies the mixed orbital. \rightarrow Pauli exclusion principle works. $2 p$ orbital of $\mathrm{C}+1 \mathrm{~s}$ orbital of H Instructive bounding $=1 \sigma \mathrm{MO}$ Destructive bounding $=2 \sigma \mathrm{MO}$ \rightarrow Interference of material wave
- 8 Molecular orbitals caused by 2 Carbon atoms (Right Figures).
- Ground State : $1 \sigma(2), 2 \sigma(2), 1 \pi(2)$
- Excited state \rightarrow Ground state +hv \rightarrow Blue Light Emission
(3) New Approach to Candle Science: $21^{\text {st }}$ Century

SYNC: The Emerging Science of Spontaneous Order (2003)

Similarity between the sync of oscillators and the phase transition

- Winfree's model: $\quad \dot{\phi}_{i}=\omega_{i}+Z\left(\phi_{i}\right) I(t), \quad I(t)=\frac{K}{N} \sum_{j=1}^{N} V\left(\phi_{j}\right)$
- Kuramoto's model: $\dot{\phi}_{i}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\phi_{j}-\phi_{i}\right)$

Incoherent Equilibrium State variety of synchrony in nature.

- Y. Kuramoto simplified Winfree's model and obtained the exact solution. The model revealed the essence of group synchronization.

Great similarity between the sync of oscillators and the phase transition : emphasized point

- A. Winfree discovered an unexpected link between biology and physics. He realized that mutual synchronization is analogous to a phase transition. $=$ Statistical physics can be a key to solve the great -

Important Points of SYNC

II. Candle Flame is a nonlinear Oscillator!

- Analogy between group synchronization and phase transition had been established.
- S. Strogazeproposed a concept of "Oscillator Fluid" to solve the stability problem of the incoherent equilibrium state. The answer was "neutrally stable
- Reduct ioni smmay not be powerful enough to solve all the great mysteries we're facing :Cancer, Consciousness, The Origin of Life, AIDS, Global Warming, • • •
- Nonl inear dynamicis central to the future of science. Chaos \rightarrow Complexity \rightarrow Emergence \rightarrow What comes next?

In-phase synchronization between two candle flame oscillators

- Close Distance ($/=2 \sim 3 \mathrm{~cm}$)

Depending on the distance parameter D , synchronization between two oscillators changes from in-phase to anti- phase.
\rightarrow At around critical distance Dc , two phases coexist, and the oscillation frequency jumps.

Oscillation and Synchronization in the Combustion of Candles

J. Phys. Chem., 113 (2009)

- Experiment:
- Chiba: H. Kitahata, T. Sakurai
- Yamaguchi: J. Taguchi, A. Osa, H. Miike
- Kyoto: Y. Sumino, M. Tanaka
- Model \& Numerical Analysis:
- Kanazawa: M. Nagayama, Y. Ikura
- Gakushuin: E. Yokoyama

Anti-phase synchronization between two candle flame oscillators

- Moderate Distance ($/=3 \sim 5 \mathrm{~cm})$

Oscillation of the length of the candle flame (-10 Hz): The mechanism of the oscillation is not well understood.

(a): The schematic drawing of the oscillation.
(b)-(f): Time-series of optical images recorded by a high-speed digital video camera.
The black arrow indicates the torn-off flame with soot.
III. Progress in Experiments: New Findings
(1) Descending turbulence above the candle flame.
(2) Explosive and periodic combustion with soot.

(1) Observations by a thermal camera

- An eddy like convection appeared above the candle flame.
- The oscillation began to start when the eddy touch down the candle flame.

A bundle of two candles case:

Observation sufficiently after the oscillation starts

Low temperature region $\downarrow_{\text {penetrates into }}$ the center of the flame.
(2) New Observations by High-speed Camera (300 frames $/ \mathrm{sec}$): Shadow Graph \& Velocimetry

Time-series of the shadow graph images of the turbulence above the flame, before and after it starts to oscillate.

Velocity Analysis : Spatial Filtering Velocimetry
Calculate the
filtered brightness
accumulation for
the respective image frames

Time evolution of velocity distribution for the air flow above the candle flame.

- (e)-(f): before the flame oscillation, (g)-(j): developing phase of the oscillation. The mean velocity of the ascending air flow increases with time. The velocity distribution is modified by the periodic brightness change with -10 Hz .

Height-dependence of the velocity distribution of the air flow above the flame during the stationary oscillation stage, obtained by the SFV-fs method.

(a) A scene in the movie of the contrast-enhanced shadow graph, which is divided by a height width $9.3 \times 10^{-2} \mathrm{~m}$. The position of height 0 m is at the bottom of the candle flame.

Discriminate between ascending flow and descending one by SFV-fs method.

Discriminate between ascending flow and descending one by SFV-fs method.

Summary of the velocity distributions above the candle flame

Discussion

1. Candle flame oscillation is possibly caused not only by periodic oxygen lack with combustion but also by the eddy like convection appeared over the flame. The eddy structure can be originated by Kelvin-Helmholtz (KH) instability.
2. Synchronization between the flame oscillators can be induced by the interaction associated with the vortexes dynamics.

- Depending on distance of oscillators the synchrony changes from in-phase to anti-phase. The change can be caused by difference of the vortex dynamics.
In-phase (close): A unified vortex is developed.
Anti-phase (apart): Two vortexes keep independence.

Next Target: Hierarchical pattern dynamics in candle flame oscillators (CFO)

- What may happen in crowded CFO?

