The $2^{\rm nd}$ German-Japanese Workshop on "Nonlinear Science and KANSEI-Informatics", $29^{\rm th}$ August, 2013 (Yamaguchi, Japan)

From Nonlinear Science to Perceptual Sciences and Design Engineering (Emergence in Vision)

H. Miike (Yamaguchi University)

Thanks to all participants

- Organizers:
- K. Koga, H. Hashimoto, K. Nakajima, Y. Hisanaga, T. Sakurai, A. Osa, Y. Mizukami, K. Okada, S. Tsukamoto, A. Nomura, T. Yamada, and M. Momota
- Speakers and Other Participants:
- Y. Kuramoto, S. Kai, S. Mueller, H. Brand, K. Tsuji,
 T. Yamaguchi, E. Yokoyama, S. Nakata, M. Ichikawa,
 T. Amemiya, T. Asai, H. Mahara, R. Kobayashi,

I really appreciate your efforts and kindness to have such a nice workshop!

1. A Historical Sketch of My Studies

1970-1975: School Days (Kyushu Univ., Fukuoka)

1976: First Assignment to Yamaguchi University (Ube, Japan)

- 1976-1986: Period I (+ Biomedical & Information Eng.)
- 1987-1995: Period II (+ Nonlinear Sci. & Image Proc.)
 1987: Post Doctoral Fellowship in MPI (Dortmund, W-Ger.)
- 1996-2013: Period Ⅲ (+ Perceptual Sci. & Design Eng.)

Modeling Footsteps Illusion

An Extended FitzHugh-Nagumo (FHN) Model with Continuous Input.

$$\begin{cases} \frac{du}{dt} = d_u (U - 4u) + \frac{1}{\varepsilon} \{ u(u - a)(1 - u) - v + I \} \\ \frac{dv}{dt} = d_v (V - 4v) + u - bv \end{cases}$$

- Variables: $u = u_{i,j}(t)$, $v = v_{i,j}(t)$
- Input: $I = I_{i,j}(t)$
- Output: $u_{i,j}(t)$
- Initial Values : $u_{i,j}(t) = v_{i,j}(t) = 0$

K. Miura et al., IEEJ Trans. EIS, Vol.129 (2009), pp.1156-1161

Results:Image Sequence of Output $u_{i,j}(t)$ 山口大学 Parameters for Input I(t) - Stripe: Width10pix. Brightness 0.1 & 0.9 - Moving Object: Width 23pix. Brightness 0.2 & 0.8 FHN Model

We have to visualize intermittency of the motion.

Output u(t)

Dependence on the Brightness of the Moving Object

· Visual Illusion: Depends on the Contrast Change

Higher Contrast Brings Clear Intermittency.

Discussion: Cause of Motion Illusion

- Interpretation by Sunaga et al. (2008)
 - Dislocation Illusion Induced by the Stimulus Image is the Main Cause of the Motion Illusion.
- Characteristics of FitzHugh-Nagumo Model
 - Smoothing Effect (controlled by εd_u)

Characteristics of FitzHugh-Nagumo Model Enhance the Dislocation Illusion.

Summary: Footsteps Illusion

- Characteristics of Footsteps Illusion are Reproduced by the Extended FitzHugh-Nagumo Model.
- **Reproduced Characteristics:**
 - The Less Stripe Width Brings the Less Illusion.
 - The More Brightness of Moving Object Brings the More Intermittency of the Motion.
 - Brightness Change Appears in the Moving Object.

2) Emergence in Vision: Motion Sharpening

Best Example of Motion Sharpening:

Summary: Motion Sharpening

- Enhancement and/or sharpening of image sequence is realized by a temporal USM (t-USM) method.
- Recently, we improved the t-USM method (t-USM').
- · Characteristics of the proposed method:
 - There is no enhancement for the still objects in the sequence.
 - Depending on the shape of edge and moving velocity, edge sharpening and contrast enhancement are realized.
 - Moving patterns hard to detect in the respective still image can be enhanced by the t-USM' method.

Our next subject = Finding nonlinear model to realize motion sharpening in a self-organized fashion.

The 2nd German-Japanese Workshop on "Nonlinear Science and KANSEI-Informatics " 29th August, 2013 (Yamaguchi, Japan)

3. Conclusion

3. Conclusion

- We have proposed discrete FitzHugh-Nagumo models.
 The nonlinear models show curious characteristics as follows.
- 1) Edge detection and figure-ground separation are realized in a self-organized fashion by the models.
- 2) Footsteps illusion and its psychological features are reproduced by extending the discrete FHN-models.
- Enhancement and/or sharpening of image sequence is realized by the temporal USM (t-USM) methods.
- ・ Thus, we believe that complex phenomena observed in our visual system are explained by nonlinear dynamics. This can be "Emergence in Vision".
 視覚における創発現象

Emergence in Vision: Nonlinear Models for Motion Illusion and Motion Sharpening

Related Studies on Visionary Emergence: Understanding Visual Processing and Visual Illusions Based on Nonlinear Sciences.

- L. Kuhnert et al., Image processing using light-sensitive chemical waves, Nature, 337(1989), pp.244-247
- E. Ueyama et al., Figure-ground separation from motion with reaction-difuson equation, IEICE, J81-D- II (1998), pp.2767-2778
- A. Nomura et al., Solving random-dot stereograms with a reaction- diffusion model · · · , in Proc. 10th International DAAAM 1999, p.385
- N.G. Rambidi et al., Image processing using light-sensitive chemical waves, Physics Letters A, 298(2002), pp.375-382
- A. Nomura et al., Realizing visual functions with the reaction-diffusion mechanism, J. Phys. Soc. Japan, 72(2003), pp.2383-2393
- M. Ebihara et al., Image processing by a discrete reaction-diffusion system, in Proc. Third IASTED Int. Conf., 1(2003), pp.378-385
- <u>K. Miura</u> et al., Self-organized feature extraction in a three-dimensional discrete reaction-diffusion system, Forma, 23(2008), pp.19-23
- A. Nomura et al., Reaction-diffusion algorithm for stereo disparity detection, Machine Vision and Applications, 20(2009), pp.175-187
- K. Miura et al., A simulation of the footsteps illusion using a reaction diffusion model, IEEJ, 129(2009), pp. 1156-1161

Thank you for your kind attention.